Translation invariant extensions of finite volume measures

نویسندگان

  • S. Goldstein
  • T. Kuna
  • J. L. Lebowitz
  • E. R. Speer
  • Yasha Sinai
چکیده

We investigate the following questions: Given a measure μΛ on configurations on a subset Λ of a lattice L, where a configuration is an element of ΩΛ for some fixed set Ω, does there exist a measure μ on configurations on all of L, invariant under some specified symmetry group of L, such that μΛ is its marginal on configurations on Λ? When the answer is yes, what are the properties, e.g., the entropies, of such measures? Our primary focus is the case in which L = Zd and the symmetries are the translations. For the case in which Λ is an interval in Z we give a simple necessary and sufficient condition, local translation invariance (LTI), for extendibility. For LTI measures we construct extensions having maximal entropy, which we show are Gibbs measures; this construction extends to the case in which L is the Bethe lattice. On Z we also consider extensions supported on periodic configurations, which are analyzed using de Bruijn graphs and which include the extensions with minimal entropy. When Λ ⊂ Z is not an interval, or when Λ ⊂ Zd with d > 1, the LTI condition is necessary but not sufficient for extendibility. For Zd with d > 1, extendibility is in some sense undecidable. Department of Mathematics, Rutgers University, New Brunswick, NJ 08903. Department of Mathematics and Statistics, University of Reading, Whiteknights, PO Box 220, Reading RG6 6AX, UK. Also Department of Physics, Rutgers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Entropy of infinite systems and transformations

The Kolmogorov-Sinai entropy is a far reaching dynamical generalization of Shannon entropy of information systems. This entropy works perfectly for probability measure preserving (p.m.p.) transformations. However, it is not useful when there is no finite invariant measure. There are certain successful extensions of the notion of entropy to infinite measure spaces, or transformations with ...

متن کامل

Translation invariant surfaces in the 3-dimensional Heisenberg‎ ‎group

‎In this paper‎, ‎we study translation invariant surfaces in the‎ ‎3-dimensional Heisenberg group $rm Nil_3$‎. ‎In particular‎, ‎we‎ ‎completely classify translation invariant surfaces in $rm Nil_3$‎ ‎whose position vector $x$ satisfies the equation $Delta x = Ax$‎, ‎where $Delta$ is the Laplacian operator of the surface and $A$‎ ‎is a $3 times 3$-real matrix‎.

متن کامل

Translation Invariant Approach for Measuring Similarity of Signals

In many signal processing applications, an appropriate measure to compare two signals plays a fundamental role in both implementing the algorithm and evaluating its performance. Several techniques have been introduced in literature as similarity measures. However, the existing measures are often either impractical for some applications or they have unsatisfactory results in some other applicati...

متن کامل

Translation Invariant Approach for Measuring Similarity of Signals

In many signal processing applications, an appropriate measure to compare two signals plays a fundamental role in both implementing the algorithm and evaluating its performance. Several techniques have been introduced in literature as similarity measures. However, the existing measures are often either impractical for some applications or they have unsatisfactory results in some other applicati...

متن کامل

Complete Closest-Target Based Directional FDH Measures of Efficiency in DEA

In this paper, we aim to overcome three major shortcomings of the FDH (Free Disposal Hull) directional distance function through developing two new, named Linear and Fractional CDFDH, complete FDH measures of efficiency. To accomplish this, we integrate the concepts of similarity and FDH directional distance function. We prove that the proposed measures are translation invariant and unit invari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015